Inhibition of Escherichia coli glucosamine-6-phosphate synthase by reactive intermediate analogues. The role of the 2-amino function in catalysis.
نویسندگان
چکیده
Glucosamine-6-phosphate synthase (GlmS) catalyzes the formation of D-glucosamine 6-phosphate from D-fructose 6-phosphate using L-glutamine as the ammonia source. Because N-acetylglucosamine is an essential building block of both bacterial cell walls and fungal cell wall chitin, the enzyme is a potential target for antibacterial and antifungal agents. The most potent carbohydrate-based inhibitor of GlmS reported to date is 2-amino-2-deoxy-D-glucitol 6-phosphate, an analogue of the putative cis-enolamine intermediate formed during catalysis. The interaction of a series of structurally related cis-enolamine intermediate analogues with GlmS is described. Although arabinose oxime 5-phosphate is identified as a good competitive inhibitor of GlmS with an inhibition constant equal to 1. 2 (+/-0.3) mM, the presence of the amino function at the 2-position is shown to be important for potent inhibition. Comparison of the binding affinities of 2-deoxy-D-glucitol 6-phosphate and 2-amino-2-deoxy-D-glucitol 6-phosphate indicates that the amino function contributes -4.1 (+/-0.1) kcal/mol to the free energy of inhibitor binding. Similarly, comparison of the binding affinities of 2-deoxy-D-glucose 6-phosphate and D-glucosamine 6-phosphate indicates that the amino function contributes -3.0 (+/-0.1) kcal/mol to the free energy of product binding. Interactions between GlmS and the 2-amino function of its ligands contribute to the uniform binding of the product and the cis-enolamine intermediate as evidenced by the similar contribution of the amino group to the free energy of binding of D-glucosamine 6-phosphate and 2-amino-2-deoxy-D-glucitol 6-phosphate, respectively.
منابع مشابه
Inhibition of Escherichia coli Glucosamine-6-phosphate Synthase by Reactive Intermediate Analogues
Glucosamine-6-phosphate synthase (GlmS) catalyzes the formation of D-glucosamine 6-phosphate from D-fructose 6-phosphate using L-glutamine as the ammonia source. Because N-acetylglucosamine is an essential building block of both bacterial cell walls and fungal cell wall chitin, the enzyme is a potential target for antibacterial and antifungal agents. The most potent carbohydrate-based inhibitor...
متن کاملCoordinated regulation of amino sugar-synthesizing and -degrading enzymes in Escherichia coli K-12.
The intracellular concentration of the enzyme glucosamine-6-phosphate synthase, encoded by the gene glmS in Escherichia coli, is repressed about threefold by growth on the amino sugars glucosamine and N-acetylglucosamine. This regulation occurs at the level of glmS transcription. It is not due just to the presence of intracellular amino sugar phosphates, because mutations which derepress the ge...
متن کاملSite-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene
Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...
متن کاملPurification and characterization of encystment-induced glucosamine 6-phosphate isomerase in Giardia.
Giardia intestinalis encystment results in the incorporation of galactosamine (GalN) (a cystwall specific sugar) into outer cyst wall filaments [1,2]. GalN is synthesized during encystment from endogenous glucose by an inducible enzyme pathway [3] and the first reaction unique to GalN synthesis is the conversion of fructose-6phosphate (F6P) to glucosamine 6-phosphate (G1cN6P) [4,5]. In G. intes...
متن کاملAmino sugar sensitivity in Escherichia coli mutants unable to grow on N-acetylglucosamine.
Studies were conducted on two mutants of Escherichia coli that lack either glucosamine-6-phosphate deaminase or N-acetylglucosamine-6-phosphate deacetylase and which accumulate glucosamine-6-phosphate or N-acetylglucosamine-6-phosphate, respectively, when grown in the presence of N-acetylglucosamine. The addition of 10(-4) to 10(-5)mN-acetylglucosamine to these mutant strains caused a rapid and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 1 شماره
صفحات -
تاریخ انتشار 2000